
 

ANNAI MATHAMMAL SHEELA ENGINEERING COLLEGE 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

 

QUESTION BANK 

 

 

 

 

 

 

 

CS6502 – OBJECT ORIENTED ANALYSIS AND DESIGN 

 

 

 

 

 

 

 

 

 

 

PREPARED BY 

K.KAVITHA, ASP/CSE 

 

 

 

 

 

 



CS6502 – OBJECT ORIENTED ANALYSIS AND DESIGN 

UNIT I – UML DIAGRAMS 

 2 Marks 

1. What is an object? 

An object is a combination of data and logic; the representation of some real-world entity. 

 

2. What are the main advantages of object oriented development? 

 High level of abstraction 

 Seamless transition among different phases of software development 

 Encouragement of good programming techniques 

 Promotion of reusability 

 

3. What is object oriented system development methodology? 

Object  oriented system development methodology is a way to develop software by building self contained 

modules or objects that can be easily replaced, modified and reused. 

 

4. Distinguish between method and message in object. 

Method Message 

Methods are similar to functions, procedures or 

subroutines in more traditional programming 

languages 

Message essentially are non specific function 

calls 

Method is an implementation Message is an instruction 

In an object oriented system, a method is 

invoked by sending an object a message. 

An object understands a message when it can 

match the message to a method that has the 

same name as the message. 

 

5. What is analysis and design? 

Analysis emphasizes an investigation of the problem and requirements, rather than a solution.For 

example, if a new computerized library information system is desired, how it will be used. 

Design emphasizes a conceptual solution that fulfills the requirements, rather  than its implementation.For  

example, a description of a database schema and software objects. 

 

6. What is object oriented analysis and design? 

During object oriented analysis,there is an emphasis on finding and describing the objects or concepts in 

the problem domain.Forexample,in the case of the library information system,some of the concepts 

include book,library and patron. 

During object oriented design,there is an emphasis on defining software objects and how they collaborate 

to fulfill the requirements.Forexample,in the library system,a book software object may have a title 

attribute and a get chap-ter method 

 

7. What is UML? 

Unified modeling language is a set of notations and conventions and diagrams to describe and model an 

application. 

 

8. What are the primary goals in the design of UML? 

 Provide users a ready to use expressive visual modeling language so they can develop and 

exchange meaningful models. 

 Provide extensibility and specialization mechanism to extend the core concepts. 

 Encourage the growth of oo tools market. 

 Support higher level development concepts. 

 



9. Define class diagram. 
The main static structure analysis diagram for the system,it represents the class structure of a system 

including the relationships between class and inheritance structure. 

 

10. Define activity diagram. 

A variation or special case of a state machine in which the states are activities representing the 

performance of operations and the transitions are triggered by the completion of the operations. 

 

11. What is interaction diagram? Mention its types. 

Intraction  diagrams are diagrams that describe how groups of objects collaborate to get the job done 

interaction diagrams capture the behavior of the single use case, showing the pattern of interaction among 

objects. 

Types: 

Sequence diagram 

Collaboration diagram 

 

12. What is sequence diagram? 

It is an easy and intuitive way of describing the behavior of a system by viewing the interaction between 

the system and its environment. 

 

13. What is collaboration diagram? 

It represents a collaboration, which is a set of objects related in a particular context, and interaction, which 

is a set of messages exchanged among the objects with in collaboration to achieve a desired outcome. 

 

14. Define start chart diagram? 

It shows a sequence of states that an object goes through during its life in response to events.A state is 

represented as a round box, which may contain one or more compartments.the compartments are all 

optional. 

 

15. What is meant by implementation diagram? 

Implementation diagrams show the implementation phase of systems development such as the source code 

structure and the run time implementation structure. 

There are two types of implementation diagrams: 

 Component diagram  and Development diagram 

 

16. Define component diagram. 

A component diagram shows the organization and dependencies among a set of components. A 

component diagram is used to model the static implementation view of a system. This involves modeling 

the physical thing that reside on a mode, such as executable, libraries, files and documents. 

 

17. Define deployment diagram, 

Deployment diagram shows the configuration of run time processing elements and the software 

components, processes and objects that live in them. 

Deployment diagrams are used to model the static deployment view of a system. A deployment diagram is 

a graph of nodes connected by communication association. 

 

18. What is UP? 

A software development process describes an approach to building, deploying and possibly maintaining 

software. The unified process has emerged as a popular iterative software development process for 

building object oriented system. 

 

 

 



19. What is iteration? 
A key practice in both the UP and most other modern methods is iterative development. In this lifecycle 

approach, development is organized into a series of short, fixed lengthmini projects called iterations. 

 

20. What is iterative evolutionary development? 

The iterative lifecycle is based on the successive enlargement and refinement of a system through multiple 

iterations, with cyclic feedback and adaptation as core drivers to converge upon a suitable system. The 

system grows incrementally over time, iteration by iteration and thus this approach is also known as 

iterative and incremental development. 

 

21. What are the phases of unified process? 

 Inception 

 Elaboration 

 Construction 

 Transition 

 

22. What is inception? 

Inception is the initial short step to establish a common vision and basic scope for the project. It will 

include analysis of perhaps 10% of the use cases, analysis of the critical non-functional requirement, 

creation of a business case and preparation of the development environment. 

 

23. Define use case modeling. 

Use case modeling is a form of requirement engineering. How to create an SRS in what we might call the 

traditional way. Use case modeling is a different and complementary way of eliciting and documenting 

requirements. 

 

24. Define use case generalization? 

Use case generalization is used when you have one or more use cases that are rally specializations of more 

general case. 

 

25. What is UML activity diagram? 

A UML activity diagram shows sequential and parallel activities in a process, they are useful for modeling 

business processes, workflows, data flows and complex algorithms. 

 

16 Marks 

 

1. Explain about Object Oriented Analysis and Design process. 

2. Discuss about unified process. 

3. Explain use case modeling with example. 

4. Explain about interaction diagrams with example. 

5. Explain UML activity diagram with example. 

6. Discuss about package, component and deployment diagrams. 

 

UNIT II – DESIGN PATTERNS 

1. How to Choose the Initial Domain Object?  
Choose as an initial domain object a class at or near the root of the containment or aggregation hierarchy 

of domain objects. This may be a facade controller, such as Register, or some other object considered to 

contain all or most other objects, such as a Store.  

 

2. Define patterns.  
A pattern is a named problem/solution pair that can be applied in new context, with advice on how to 

apply it in novel situations and discussion of its trade-offs.  



3. How to Connect the UI Layer to the Domain Layer?  
An initializing routine (for example, a Java main method) creates both a UI and a domain object, and 

passes the domain object to the UI.  

A UI object retrieves the domain object from a well-known source, such as a factory object that is 

responsible for creating domain objects.  

 

4. Mention the Interface and Domain Layer Responsibilities.  
The UI layer should not have any domain logic responsibilities. It should only be responsible for user 

interface tasks, such as updating widgets. The UI layer should forward requests for all domain-oriented 

tasks on to the domain layer, which is responsible for handling them.  

 

5. How to Apply the GRASP Patterns?  
The following sections present the first five GRASP patterns:  

 Information Expert  

Creator  

High Cohesion  

Low Coupling  

Controller  

 

6. Define Responsibilities and Methods.  
The UML defines a responsibility as "a contract or obligation of a classifier" [OMG01]. Responsibilities 

are related to the obligations of an object in terms of its behavior. Basically, these responsibilities are of 

the following two types:  

- knowing  

-doing 

7. List out some scenarios that illustrate varying degrees of functional cohesion.  
-Very low cohesion  

-low cohesion  

-High cohesion  

-Moderate cohesion  

 

8. Define Modular Design.  
Coupling and cohesion are old principles in software design; designing with objects does not imply 

ignoring well-established fundamentals. Another of these, which is strongly related to coupling and 

cohesion is to promote modular design.  

 

9. What are the advantages of Factory objects?  
 Separate the responsibility of complex creation into cohesive helper objects.  

 Hide potentially complex creation logic.  

 Allow introduction of performance-enhancing memory management strategies, such as object 

caching or recycling. 

10. What is meant by Abstract Class Abstract Factory?  
A common variation on Abstract Factory is to create an abstract class factory that is accessed using the 

Singleton pattern, reads from a system property to decide which of its subclass factories to create, and then 

returns the appropriate subclass instance. This is used, for example, in the Java libraries with the 

java.awt.Toolkit class, which is an abstract class abstract factory for creating families of GUI widgets for 

different operating system and GUI subsystems.  

 

11. Differentiate coupling and cohesion. 

Coupling deals with interactions between objects or software components while cohesion deals with the 

interactions within a single object or software component. Highly cohesive components can lower 

coupling because only a minimum of essential information need to b passed between components. 



12. What is meant by Fine-Grained Classes?  
Consider the creation of the Credit Card, Drivers License, and Check software objects. Our first impulse 

might be to record the data they hold simply in their related payment classes, and eliminate such fine-

grained classes. However, it is usually a more profitable strategy to use them; they often end up providing 

useful behavior and being reusable. For example, the Credit Card is a natural Expert on telling you its 

credit company type (Visa, MasterCard, and so on).  

This behavior will turn out to be necessary for our application.  

 

13. Define coupling.  
The degree to which components depend on one another. There are two types of coupling, "tight" and 

"loose". Loose coupling is desirable for good software engineering but tight coupling may be necessary 

for maximum performance. Coupling is increased when the data exchanged between components becomes 

larger or more complex. 

 

14. What do you mean by degree of coupling? 

` The degree of coupling is a function of 

How complicated the connection is. 

Whether the connection refers to the object itself or something inside it. 

What is being sent or received. 

The degree or strength of coupling between two components is measured by the amount and complexity 

of information transmitted between them. Coupling increases with increasing complexity and decreases 

when the connection is to the component interface rather than to an internal component. Coupling is also 

lower for data connections than for control connections. 

 

15. What do you mean by cohesion? Give the types of cohesion. 

Cohesion can be defined as the interactions within a single object or software component. Cohesion 

reflects the single purposeness of an object. Cohesion helps in designing classes that have very specific 

goals and clearly defined purposes. 

Method cohesion 

Class cohesion 

Inheritance cohesion 

 

16. What do you mean by design patterns?  

Design patterns are devices that allow systems to share knowledge about their design, by describing 

commonly recurring structures of communicating components that solve a general design problem within 

a particular context. A design pattern provides a scheme for refining the subsystems or components of a 

software system or the relationships among them. Design patterns are documented by writing essays in a 

fairly well-defined form. 

 

17. What are the three basic types of attributes? 

The three basic types of attributes are 

Single-value attributes. 

The single-valued attribute has only one value or state. 

Multiplicity or multi value attributes. 

The multiplicity or multi valued attribute can have a collection of many values at any point 

in time. 

Reference to another object, or instance connection. 

These attributes are required to provide the mapping needed by an object to fulfill its 

responsibilities, in other words, instance connection model association. 

 

18. What is a Metaphor? 

It is an analogy that relates two unrelated things by using one to denote the other. 

 



19. Give the three UI design rules. 
UI design rule 1: Making the interface simple. 

UI design rule 2: Making the interface transparent and natural. 

UI design rule 3: Allowing users to be in control of the software. 

 

20. Define Package. 

A package groups and manages the modeling elements, such as classes, their associations, and their 

structures. Packages themselves may be nested within other packages. A package may contain both other 

packages and ordinary model elements. The entire system description can be thought of as a single high-

level  sub-system package with everything else init. All kinds of UML model elements and diagrams can 

be organized into packages. 

 

21. What is concurrency policy? 

A concurrency control policy dictates what happens when conflicts arise between transactions that attempt 

access to the same object and how these conflicts are to be resolved  

There are two policies: 

Conservative or pessimistic policy 

Allows a user to lock all objects or records when they are accessed and to release the locks 

only after a transaction commits. 

Optimistic policy 

Two conflicting transactions are compared in their entirety and then their serial ordering is 

determined. 

 

 

16 Marks 

1. Explain GRASP: designing objects with responsibilities. 

2. Explain GoF design patterns. 

3. Discuss about creator and information expert. 

4. Explain about low coupling and high cohesion. 

5. Explain about factory and observer patterns. 

6. Explain adapter and singleton with an example. 

 

UNIT III – CASE STUDY 

1. What is Inception? 
Inception is the initial short step to establish a common vision and basic scope for the Project. It will 

include analysis of perhaps 10% of the use cases, analysis of the critical non- Functional requirement, 

creation of a  business case, and preparation of the development environment so that programming can 

start in the elaboration phase. Inception in one  Sentence: Envision the product scope, vision, and business 

case.  

 

2. What Artifacts May Start in Inception?  
Some sample artifacts are Vision and Business Case, Use-Case Model, Supplementary Specification, 

Glossary, Risk List & Risk Management Plan, Prototypes and proof-of-concepts etc.  

 

3. Define Requirements and mention its types.  
Requirements are capabilities and conditions to which the system and more broadly, the project must 

conform.  

1. Functional  

2. Reliability  

3. Performance  

4. Supportability  

 



4. What are Actors?  
An actor is something with behavior, such as a person (identified by role), computer system, or 

organization; for example, a cashier.  

 

5. What is a scenario?  
A scenario is a specific sequence of actions and interactions between actors and the system; it is also 

called a use case instance. It is one particular story of using a system, or one path through the use case; for 

example, the scenario of successfully purchasing items with cash, or the scenario of failing to purchase 

items because of a credit payment denial.  

 

6. Define Use case.  
A use case is a collection of related success and failure scenarios that describe an actor using a system to 

support a goal. Use cases are text documents, not diagrams, and use-case modeling is primarily an act of 

writing text, not drawing diagrams.  

 

7. What are Three Kinds of Actors?  

Primary actor, Supporting actor, offstage actor.  

 

8. What Tests Can Help Find Useful Use Cases?  
1. The Boss Test  

2. The EBP Test  

3. The Size Test  

 

9. What are Use Case Diagrams?  
A use case diagram is an excellent picture of the system context; it makes a good context diagram that is, 

showing the boundary of a system, what lies outside of it, and how it gets used. It serves as a 

communication tool that summarizes the behavior of a system and its actors.  

 

10. What are Activity Diagrams?  
A diagram which is useful to visualize workflows and business processes. These can be a useful 

alternative or adjunct to writing the use case text, especially for business use cases that describe complex 

workflows involving many parties and concurrent actions. 

 

11. What is Elaboration?  
Elaboration is the initial series of iterations during which the team does serious investigation, implements 

(programs and tests) the core architecture, clarifies most requirements, and tackles the high-risk issues. In 

the UP, "risk" includes business value. Therefore, early work may include implementing scenarios that are 

deemed important, but are not especially technically risky.  

 

12. What are the tasks performed in elaboration?  

The core, risky software architecture is programmed and tested  

The majority of requirements are discovered and stabilized  

The major risks are mitigated or retired  

 

13. What are the key ideas and best practices that will manifest in elaboration?  

 Do short time boxed risk-driven iterations  

 Start programming early  

 Adaptively design, implement, and test the core and risky parts of the architecture  

 Test early, often, realistically  

 Adapt based on feedback from tests, users, developers  

 

 



14. What artifacts may start in elaboration? 

 

Domain Model  
This is a visualization of the domain concepts; it is similar 

to a static information model of the domain entities.  

Design Model  

This is the set of diagrams that describes the logical design. 

This includes software class diagrams, object interaction 

diagrams, package diagrams, and so forth.  

Software Architecture Document 
A learning aid that summarizes the key architectural issues 

and their resolution in the design. It is a summary of the 

outstanding design ideas and their motivation in the system.  

Data Model  
This includes the database schemas, and the mapping 

strategies between object and non-object representations.  

Use-Case Storyboards, UI 

Prototypes  

 

Descriptions of the user interface, paths of navigation, 

usability models, and so forth.  

 

15. What are the key ideas for Planning the Next Iteration?  
Organize requirements and iterations by risk, coverage, and criticality.  

 

16. What is a Domain Model? 
A domain model is a visual representation of conceptual classes or real-situation objects in a domain. The 

term "Domain Model" means a representation of real-situation conceptual classes, not of software objects. 

The term does not mean a set of diagrams describing software classes, the domain layer of a software 

architecture, or software objects with responsibilities.  

 

17. How the domain model is illustrated?  
Applying UML notation, a domain model is illustrated with a set of class diagrams in which no operations 

(method signatures) are defined. It provides a conceptual perspective. It may show:  

 domain objects or conceptual classes  

 associations between conceptual classes  

 attributes of conceptual classes  

 

18. Why Call a Domain Model a "Visual Dictionary"?  
The information it illustrates could alternatively have been expressed in plain text. But it's easy to 

understand the terms and especially their relationships in a visual language, since our brains are good at 

understanding visual elements and line connections. Therefore, the domain model is a visual dictionary of 

the noteworthy abstractions, domain vocabulary, and information content of the domain.  

 

19. What are the elements not suitable in a domain model?  
The following elements are not suitable in a domain model  

 Software artifacts, such as a window or a database, unless the domain being modeled is of software 

concepts, such as a model of graphical user interfaces.  

 Responsibilities or methods  

 

20. What are Conceptual Classes? 
The domain model illustrates conceptual classes or vocabulary in the domain. Informally, a conceptual 

class is an idea, thing, or object. More formally, a conceptual class may be considered in terms of its 

symbol, intension, and extension  

 Symbol words or images representing a conceptual class.  

 Intension the definition of a conceptual class.  

 Extension the set of examples to which the conceptual class applies  

 

 



21. How to Create a Domain Model?  
The current iteration requirements under design:  

1. Find the conceptual classes (see a following guideline).  

2. Draw them as classes in a UML class diagram.  

3. Add associations and attributes.  

 

22. How to Find Conceptual Classes?  
 Reuse or modify existing models. This is the first, best, and usually easiest approach, and where I 

will start if I can. There are published, well-crafted domain models and data models (which can be 

modified into domain models) for many common domains, such as inventory, finance, health, and 

so forth. Example books that I'll turn to include Analysis Patterns by Martin Fowler, Data Model 

Patterns by David Hay, and the Data Model Resource Book (volumes 1 and 2) by Len Silverton.  

 Use a category list.  

 Identify noun phrases  

 

23. Define Association.  
An association is a relationship between classes (more precisely, instances of those classes) that indicates 

some meaningful and interesting connection.  

 

24. What is Aggregation?  
Aggregation is a vague kind of association in the UML that loosely suggests whole-part relationships (as 

do many ordinary associations). It has no meaningful distinct semantics in the UML versus a plain 

association, but the term is defined in the UML.  

 

25. What is composition? 
Composition, also known as composite aggregation, is a strong kind of whole-part aggregation and is 

useful to show in some models. A composition relationship implies that 1) an instance of the part (such as 

a Square) belongs to only one composite instance (such as one Board) at a time, 2) the part must always 

belong to a composite (no free-floating Fingers), and 3) the composite is responsible for the creation and 

deletion of its parts either by itself creating/deleting the parts, or by collaborating with other objects.  

 

 16 Marks 

1. Explain about NextGen POS system. 

2. Explain about inception. 

3. Discuss about conceptual classes description classes with examples. 

4. Explain about association and attributes. 

5. Briefly discuss about elaboration use case modeling. 

6. Explain about aggregation and composition.  

 

UNIT IV – APPLYING DESIGN PATTERNS 

 
1. What is meant by System Sequence Diagrams? 

A system sequence diagram (SSD) is a picture that shows, for a particular scenario of a use case, the events 

that external actors generate their order, and inter-system events. All systems are treated as a black box; the 

emphasis of the diagram is events that cross the system boundary from actors to systems.  

 

2. Define System Events and the System Boundary.  

To identify system events, it is necessary to be clear on the choice of system boundary, as discussed in the 

prior chapter on use cases. For the purposes of software development, the system boundary is usually chosen to 

be the software system itself; in this context, a system event is an external event that directly stimulates the 

software.  

 



3. What is meant by System Behavior?  
System behavior is a description of what a system does, without explaining how it does it. One Part of that 

description is a system sequence diagram. Other parts include the Use cases, and system contracts.  

 

4. What is meant by Inter-System SSDs?  
SSDs can also be used to illustrate collaborations between systems, such as between the Next Gen POS and the 

external credit payment authorizer. However, this is deferred until a later iteration in the case study, since this 

iteration does not include remote systems collaboration.  

  

5. How to Name System Events and Operations?  
System events (and their associated system operations) should be expressed at the level of intent rather than in 

terms of the physical input medium or interface widget level.  

It also improves clarity to start the name of a system event with a verb Thus "enter item" is better than "scan" 

(that is, laser scan) because it captures the intent of the operation while remaining abstract and noncommittal 

with respect to design choices about what interface is used to capture the system event. 

 

6. What is meant by interaction diagram?  
The term interaction diagram is a generalization of two more specialized UML diagram types; both can be 

used to express similar message interactions:  

Collaboration diagrams  

Sequence diagrams  

 

7. What is meant by link?  
A link is a connection path between two objects; it indicates some form of navigation And visibility between 

the objects is possible . More formally, a link is an instance of an association. For example, there is a link or 

path of navigation from a Register to a Sale, along which messages may flow, such as the make 2 Payment 

message.  

 

8. What is meant by Messages?  
Each message between objects is represented with a message expression and small arrow indicating the 

direction of the message. Many messages may flow along this link. A sequence number is added to show the 

sequential order of messages in the current thread of control.  

 

9. How to create an instance?  
Any message can be used to create an instance, but there is a convention in the UML to use a message named 

create for this purpose. If another (perhaps less obvious) message name is used, the message may be annotated 

with a special feature called a UML stereotype, like so: «create».  

The create message may include parameters, indicating the passing of initial values. This indicates, for 

example, a constructor call with parameters in Java. 

 

10. List the approaches for identifying classes. 

The four alternative approaches for identifying classes: 

The noun phrase approach. 

The common class patterns approach. 

The use-case driven, sequence/collaboration modeling approach. 

The classes, responsibilities and collaborators (CRC) approach. 

 

11. What is the common class patterns strategy? Give the list of patterns used. 

The common class patterns approach is based on a knowledge base of the common classes that have been 

proposed researchers. The patterns used for finding the candidate class and object are: 

Concept class 

Events class 

Organization class 

People class 

Places class & Tangible things and devices class 



12. Give the guidelines for naming a class. 
The guidelines for naming classes: 

The class name should be singular. 

One general rule for naming classes is that you should use names with which the users or clients 

are comfortable. 

The name of a class should reflect its intrinsic nature 

Use readable name.  

Capitalize class names. 

 

13. What is meant by CRC card?  

CRC cards are index cards, one for each class, upon which the responsibilities of the class are briefly written, 

and a list of collaborator objects to fulfill those responsibilities. They are usually developed in a small group 

session. The GRASP patterns may be applied when considering the design while using CRC cards.  

 

14. What is meant by Pure Fabrication?  

This is another GRASP pattern. A Pure Fabrication is an arbitrary creation of the designer, not a software class 

whose name is inspired by the Domain Model. A use-case controller is a kind of Pure Fabrication.  

 

15. List the relationships used in class diagram? 
Generalization(class to class)  

Association (object to object)  

Aggregation (object to object)  

Composition (object to object)  

 

16. What is generalization hierarchy? Give the advantage. 

Super class–subclass relationship also known as generalization hierarchy; allow objects to be built from 

other objects. Such relationships allow us to explicitly take advantage of the commonality of objects when 

constructing new classes. The super-sub class hierarchy is a relationship between classes, where one class 

is the parent (super or ancestor) class of another (derived) class. The real advantage of using this technique 

is that we can build on what we already have and more important, reuse what we already have. 

 

17. What are some common associations? 

The common association patterns which can be stored in the repository are based on some common 

associations: 

Location association: 

Next to, part of, contained in. 

Communication association: 

Talk to, order to. 

 

18. Why do we need to identify the system’s responsibilities? 

We need to identify the system‘s responsibilities because responsibilities identify problems that are to be 

solved. A responsibility serves as a handle for discussing potential solutions. Once the system‘s 
responsibilities are understood we can start identifying the attributes of the system‘s classes. 
 

19. How would you identify attributes? 

i) Attributes usually correspond to nouns followed by preposition phrases. Attributes also may correspond  

   to adjectives or adverbs. 

ii) Keep the class simple; state only enough attributes to define the object state. 

iii) Attributes are less likely to be fully described in the problem statement. 

iv) Omit derived attributes. They should be expressed as a method. 

v) Do not carry excess identification. 

 

 



20. How would you identify methods? 
 The sequence diagrams assist us in defining services that the objects must provide. These services are 

implemented as the methods for your objects. 

 In a sequence diagram the events that occur between objects are drawn between the vertical object 

lines. An event is considered to be an action that transmits information; therefore these actions are the 

operations that the objects must perform. 

 Methods also can be derived from the scenario testing. 

 

21. Why do we need methods and messages in object-oriented system? 

Objects not only describe abstract data but also must provide some services. Methods and messages are 

the workhorses of object-oriented systems. In an object-oriented environment, every piece of data or 

object is surrounded by a rich set of routines called methods. Methods are responsible for managing the 

value of attributes such as query, updating, reading and writing. 

 

16 Marks 

1. Explain system sequence diagram with an example. 

2. Explain logical architecture and UML package diagram. 

3. Discuss about class diagram with example. 

4. Explain about interaction diagram with example. 

5. Discuss about GoF design patterns. 

 

UNIT V – CODING AND TESTING 

 

2 Marks 

 

1. What are the steps in mapping design to code? 
Implementation in an object-oriented programming language requires writing source code for:  

 Class and interface definitions  

Method definitions  

 

2. How will you create Class Definitions from DCDs? 

At the very least, DCDs depict the class or interface name, super classes, method signatures, and simple 

attributes of a class. This is sufficient to create a basic class definition in an object-oriented programming 

language. Later discussion will explore the addition of interface and namespace (or package) information, 

among other details.  

 

3. What are the Benefits of Iterative Development? 

 Early rather than late mitigation of high risks (technical, requirements, objectives, usability, and so 

forth)  

 Early visible progress  

 Early feedback, user engagement, and adaptation, leading to a refined system that more closely meets 

the real needs of the stakeholders  

 managed complexity; the team is not overwhelmed by "analysis paralysis" or very long and complex 

steps  

 The learning within iteration can be methodically used to improve the development process itself, 

iteration by iteration 

 

4. Specify the issues in OO testing. 

Unit of testing 

Implications of encapsulation and composition 

Implications of inheritance 

Implications of Polymorphism 

 

 



5. List the levels of object oriented testing. 
 Operation / Method 

 Class 

 Integration 

 System Testing 

 

6. Define unit. 

 a single, cohesive function 

 a function which, when coded, fits on one page 

 the smallest separately compilable segment of code 

 the amount of code that can be written in 4 to 40 hours 

 a task in a work breakdown structure 

 code that is assigned to one person 

 

7. What is the purpose of unit testing? 

 The goal of unit testing is to verify that, taken by itself, the unit functions correct.  

 

8. Define integration testing. 

Integration testing (sometimes called integration and testing, abbreviated I&T) is the phase in software 

testing in which individual software modules are combined and tested as a group. It occurs after unit 

testing and before validation testing. 

 

9. What is meant by thread? 

 a sequence of machine instructions 

 a sequence of source instructions 

 a scenario of normal usage 

 a system-level test case 

 a stimulus/response pair  

 the behavior that results from a sequence of system-level inputs 

 an interleaved sequence of system inputs (stimuli) and outputs (responses) 

 

10. Define MM- path. 
A Method/Message Path (MM-Path) is a sequence of method executions linked by messages. An MM-Path 

starts with a method and ends when it reaches a method which does not issue any messages of its own.  

11. Define ASF. 
An Atomic System Function (ASF) is an input port event, followed by a set of MM-Paths, and terminated by  

an output port event. An atomic system function is an elemental function visible at the system level. 

 

12. Mention the five distinct levels of OO testing. 

 Method 

 Messgae Quiescence 

 Event Quiescence 

 Thread Testing 

 Thread Interaction Testing 

 

13. Define EMDPNs. 

An Event and Message Driven Petrinet (EMDPN) is a quadripartite directed graph(P,D,M,In,Out) 

composed of four set of nodes P,D,M and S and two mappings In and Out. 

 

14. Define GUI testing. 

GUI testing is the process of ensuring proper functionality of the graphical user interface (GUI ) for a 

given application and making sure it conforms to its written specifications. 



15. List out the types of Events.  

External event  

Internal event  

Temporal event   

 

16. Define External event.  

External event—also known as a system event, is caused by something (for example, an actor) outside our 

system boundary. SSDs illustrate external events. Noteworthy external events precipitate the invocation of 

system operations to respond to them.  

 

17. Define internal event.  

Internal event—caused by something inside our system boundary. In terms of software, an internal event arises 

when a method is invoked via a message or signal that was sent from another internal object. Messages in 

interaction diagrams suggest internal events.  

 

18. Define temporal event.  

Temporal event—caused by the occurrence of a specific date and time or passage of time. In terms of software, 

a temporal event is driven by a real time or simulated-time clock.  

 

19. What are the difficulties in GUI testing. 

 GUI test automation is difficult 

 Often GUI test automation is technology-dependent 

 Observing and trace GUI states is difficult 

 UI state explosion problem 

 Controlling GUI events is difficult 

 GUI test maintenance is hard and costly 

 

16 Marks 

 

1. Explain the process of mapping design to code. 

2. Discuss about the various issues in OO testing. 

3. Explain about class testing with example. 

4. Explain the following: 

1. OO integration testing 

2. OO system testing 

5. Explain about GUI testing. 


